Course Type	Course Code	Name of Course	L	T	P	Credit
DE	NMED520	Industrial Robotics	3	0	0	3

Course Objective

•To expose the students to analyses and applications of any standard serial chain industrial robot arm.

Learning Outcomes

Upon successful completion of this course, students will:

- have a broad understanding of classification of robots and robotic manipulators used in the industry.
- · have an understanding about basics of robot kinematics, dynamics, control and programming.
- · have knowledge of implementing a robot for any industrial use.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Introduction: Robot definition, application, robot anatomy; robot classifications and specifications, serial robots.	4	Understanding robot, its classifications, and general applications
2	Transformations: Grubler-Kutzbach Criterion; DOF of a Robot Manipulator; Pose or Configuration; Denavit-Hartenberg (DH) Parameters; Homogeneous transformation.	6	Understanding the analytical procedure involved in motion transformation from fixed base to the end-effector
3	Robot kinematics: forward and inverse kinematics, link velocity and acceleration analysis: Jacobian matrix; Singularity.	3	This unit demonstrates the kinematic analysis of serial chain robots
4	Industrial Robot Installation and Commissioning: Mastering a Robot, Tool Centre Point Calibration: 4-Point method, External reference method, Orientation calibration: World frame method, Two- point method.	3	This unit would expose to installation and commissioning of a robot and attaching a new tool frame.
5	Calibration of Industrial Robot system: External fixed tool, Workpiece calibration: Direct and Indirect methods, Work Surface calibration: 3-Point method and Indirect method, Linear rail robot mounts and external rotary turn-table.	4	This unit would expose the students top calibrating of the robot workspace and various fixtures that are used in a standard industrial environment.
6	Statics: Link forces and moments; Recursive formulas; force and moment recursion at different joints, Role of Jacobian; Force ellipsoid.	4	Learning the relationships between the joint torques/forces, and the Cartesian moments and forces at the end-effector.
7	Dynamics: Inertial properties, Generalized coordinates; Kinetic and potential energy; Euler-Lagrange and Newton-Euler formulations for obtaining robot dynamic equation of motion forward and inverse dynamics.	7	Analysing forces and moments causing the motion of different parts of serial chain robotic manipulator
8,	Robot Control: Transfer function and state-space representation of a robotic joint, performance and stability of feedback control, P, PI, PD and PID control, state-feedback control, joint controllers; Non-linear control; stability and force control.	7	Using linear and nonlinear control techniques when a robot performs any job.
9	Industrial Robot Programming, Safeties and Norms: Workspace and Operator Safety, Safety triggers and functions, Workspace monitoring and marking	4	This unit would expose the student to various safeties and norms related to robot operation.

forbidden zones, External and Interdevices, Norms and Regulations.	Implementing various zones of operation and programming a robot.		
Total		42	

Text Books:

- 1. S. K. Saha, Introduction to Robotics, McGraw Hill, 2ndEdition, 2014
- 2. John J. Craig, Introduction to Robotics: Mechanics and Control, Prentice Hall

Reference Books:

- 1. Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control, Wiley
- 2. K. S. Fu, R. C. Gonzalez, C. S. G. Lee, Robotics: Control, Sensing, Vision and Intelligence McGraw-Hill